‘Multi View Graphing’: Synchronous Linked Multi Visualization utilising Brushing, Binning and Clustering
نویسنده
چکیده
................................................................................................................................ 1 Declaration ............................................................................................................................ 2 Copyright .............................................................................................................................. 3 Acknowledgements ............................................................................................................... 4 1.0 Introduction ............................................................................................................... 5 1.1 Problem Domain ...................................................................................................... 5 1.2 Background ............................................................................................................. 9 1.3 Goals ...................................................................................................................... 10 1.4 Organisation .......................................................................................................... 11 2.0 Prior Research ......................................................................................................... 13 2.1 Synchronous Linked Multi Visualization .............................................................. 13 2.1.1 Visualization Styles ........................................................................................ 14 2.1.2 Synchronous Linked Visualization ................................................................. 20 2.2 Data Brushing ........................................................................................................ 22 2.2.1 Brush Parameters ............................................................................................ 23 2.2.2 Brush Shapes................................................................................................... 25 2.3 Data Binning .......................................................................................................... 30 2.3.1 Binning Techniques ........................................................................................ 31 2.4 Data Clustering and Classification ........................................................................ 34 2.4.1 Clustering Algorithms .................................................................................... 35 2.4.3 Presentational Methods ................................................................................... 36 3.0 ‘Multi View Graphing’ ........................................................................................... 39 3.0.1 The Visualization Pipeline .............................................................................. 39 3.1 Synchronous Linked Multiple Visualization ......................................................... 40 3.1.1 Sharing the Data.............................................................................................. 41 3.1.2 Visualization Styles ........................................................................................ 41 3.1.3 Cross Visualization Interaction ....................................................................... 50 3.2 Data Brushing ........................................................................................................ 51 3.2.1 Brush Shapes................................................................................................... 53 3.2.2 Brushing Groups ............................................................................................. 60 3.2.3 Data Visibility ................................................................................................. 61 3.3 Data Binning .......................................................................................................... 62 3.3.1 Grid Based Binning ........................................................................................ 63 3.3.2 Arithmetic Mean Binning Method .................................................................. 64 3.3.2 Density Map Binning Method ........................................................................ 69 3.4 Data Clustering ...................................................................................................... 75 3.4.2 Visual Cues ..................................................................................................... 76 3.4.1 Algorithmic Concepts ..................................................................................... 78 4.0 Test Cases ................................................................................................................. 80 4.1 Lumbar Anterior Root Stimulation Data ............................................................... 80 4.1.1 Goals of Data Exploration .............................................................................. 81 4.1.2 Previous Analysis ........................................................................................... 81 4.1.3 Application of MVG ....................................................................................... 82 4.1.4 Conclusion ...................................................................................................... 92 4.2 WMIC MRI Data ................................................................................................... 93 4.2.1 Goals of Data Exploration .............................................................................. 94 4.2.2 Previous Analysis ........................................................................................... 94 4.2.3 Application of MVG ....................................................................................... 95 4.2.4 Conclusions ................................................................................................... 100 4.3 Hadley Centre Weather Data (UK Met Office) ................................................... 101 4.3.1 Goals of Data Exploration ............................................................................ 102 4.3.2 Application of MVG ..................................................................................... 103 4.3.3 Conclusions ................................................................................................... 109 5.0 Conclusion .............................................................................................................. 110 5.1 Future Work ........................................................................................................ 112 6.0 Bibliography .......................................................................................................... 114 7.0 Appendix A: MVG Overview ............................................................................... 119 A.1 Input File Format ................................................................................................ 119 A.2 Two Dimensional Scatter Plot ............................................................................ 120 A.2.1 General Options ........................................................................................... 120 A.2.2 Data Brushing .............................................................................................. 121 A.2.3 Data Binning ................................................................................................ 124 A.2.4 Data Clustering ............................................................................................ 126 A.3 Three Dimensional Scatter Plot .......................................................................... 127 A.3.1 General Options ........................................................................................... 128 A.3.2 Data Brushing .............................................................................................. 128 A.3. Data Binning .................................................................................................. 130 A.4 Parallel Coordinates ............................................................................................ 132 A.4.1 General Options ........................................................................................... 132 A.4.2 Data Brushing .............................................................................................. 135 A.4.3 Data Binning ................................................................................................ 136 A.5 Star Glyphs ......................................................................................................... 138 A.5.1 Data Brushing .............................................................................................. 138 A.6 Data Grid ............................................................................................................ 140 A.6.1 Brushed Data ................................................................................................ 140 A.6.2 Binned or Clustered Data ............................................................................. 141 A.7 Linked Interaction .............................................................................................. 142 8.0 Appendix B: OpenGL Geometry Lists within MVG ......................................... 144 9.0 Appendix C: Standardised Test Case Questionnaires ....................................... 146
منابع مشابه
Smooth Brushing for Focus+Context Visualization of Simulation Data in 3D
We present the usage of a non-discrete degree of interest (DOI) function, obtained by brushing multi-valued 3D simulation data in information visualization views, to define opacity, color, and geometrical transfer functions for 3D rendering in a scientific visualization view via linking. To reflect the smooth nature of features in flow simulation data, smooth brushing was chosen. Different avai...
متن کاملMarkov Chain Driven Multi-Dimensional Visual Pattern Analysis with Parallel Coordinates
Parallel coordinates is a widely used visualization technique for presenting, analyzing and exploring multidimensional data. However, like many other visualizations, it can suffer from an overplotting problem when rendering large data sets. Until now, quite a few methods are proposed to discover and illustrate the major data trends in cluttered parallel coordinates. Among them, frequency-based ...
متن کاملPoster: Indirect Multi-Touch Interaction for Brushing in Parallel Coordinates
Interaction in visualization is often complicated and tedious. Brushing data in a visualization such as parallel coordinates allows the user to select data points according to certain criteria; modifying a brush requires a lot of effort and mode switches. We propose the use of multi-touch interaction to provide fast and convenient interaction with parallel coordinates. By using a multitouch tra...
متن کاملA Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images
Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...
متن کاملIndirect multi-touch interaction for brushing in parallel coordinates
Interaction in visualization is often complicated and tedious. Brushing data in a visualization such as parallel coordinates is a central part of the data analysis process, and sets visualization apart from static charts. Modifying a brush, or combining it with another one, usually requires a lot of effort and mode switches, though, slowing down interaction and even discouraging more complex qu...
متن کامل